• ABCD – ромб, диагонали которого пересекаются в точке О. Отрезок OF — медиана треугольника AOD. Вычислите длинны отрезка OF, если периметр ромба равен 36 см.

Ответы 1

  • ABCD-ромб, все стороны которого равны .Периметр ромба =36. Сторона ромба =9,так как 36:4=9.Проведем из вершины O медиану OF на сторону AD. Известно что диагонали пересекаются в точке O ,а в ромбе между диагоналями углы BOA=BOC=COD=DOA=90 градусов. Значит треугольник AOD-прямоугольный.По свойству медианы прямоугольного треугольника, медиана проведенная из вершины прямого угла равна половине гипотенузы.То есть OF=1/2AD;OF=1/2*9=4,5
    • Автор:

      halle
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years