• В правильном треугольнике ABC со стороной AB = 4 см, через вершину A проведено перпендикуляр АМ к плоскости треугольника ABC, AM = 4√3 см.
    А) Докажите, что прямая BC перпендикулярна
    плоскости AMP, где P - середина стороны BC.
    Б) Найдите расстояние от точки M до прямой BC

    question img

Ответы 1

  • ABC - равносторонний, где AP - высота, медиана, биссектриса. ⇒ AP ⊥ BC. Плоскость перпендикулярна, если прямая, лежащая в плости, перпендикулярна, а раз AP ⊥ BC, то плоскость AMP ⊥ BCВысота в равностороннем треугольнике -  \frac{a \sqrt{3} }{2} a = 4. Высота, AP, равна 2√3. Рассмотрим треугольник MAP, MA ⊥ AP - треугольник прямоугольный. MP² = MA² + AP² по теореме ПифагораMP² = 60. MP = 4√15
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years