• точка m середина стороны ab четырехугольника abcd. докажите, что площадь треугольника mcd равно полусумме площадей треугольников acd и bcd

Ответы 1

  • Пусть МН- высота ΔMCD

    AH₁- высота Δ ACD

    BH₂- высота Δ ВСD

    Получим прямоугольную трапецию АВН₂Н₁, в которой МН- средняя линия,

     

    MH=\frac{AH_1+ BH_2 }{2}

     

    S_A_C_D=\frac{CD\cdot AH_1}{2}\\\\S_B_C_D=\frac{CD\cdot BH_2}{2}\\\\S_M_C_D=\frac{CD\cdot MH}{2}=\frac{CD\cdot\frac{AH_1+BH_2}{2}}{2}

     

    Проверим равенство:

     

    \frac{CD\cdot\frac{AH_1+BH_2}{2}}{2}=\frac{\frac{CD\cdot AH_1}{2}+\frac{CD\cdot BH_2}{2}}{2}\\\\CD\cdot\frac{AH_1+BH_2}{2}}=\frac{CD\cdot AH_1}{2}+\frac{CD\cdot BH_2}{2}}\\\\\frac{AH_1+BH_2}{2}}=\frac{AH_1}{2}+\frac{BH_2}{2}}\\\\AH_1+BH_2}=AH_1}+{BH_2}

     

    ЧТД

    Ну и, как "Лучшее решение" не забудь отметить, ОК?!... ;)))

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years