• диоганали ромба относятся как 8:15 а его площадь равна 240 см2 найдите диагонали ромба

Ответы 1

  • Диагонали ромба являются биссектрисами его углов. Дано: ABCD - ромб - Доказать: AC ^ BD, BD и CA - биссектрисы углов ромба.

    Обозначим вершины ромба буквами латинского алфавита A, B, C и D для удобства обсуждения. Точку пересечения диагоналей традиционно обозначают буквой O. Длину ребра ромба обозначим буквой a. Величину угла BCD, который равен углу BAD, обозначим α.

    2

    Найдем величину короткой диагонали. Так как диагонали пересекаются под прямым углом, то треугольник COD является прямоугольным. Половина короткой диагонали OD является катетом этого треугольника и может быть найдена через гипотенузу CD, а также угол OCD.

    Диагонали ромба являются также биссектрисами его углов, поэтому угол OCD равен α/2.Таким образом, OD = BD/2 = CD*sin(α/2). То есть, короткая диагональ BD = 2a*sin(α/2).

    3

    Аналогичным образом, из того, что треугольник COD прямоугольный, можем выразить величину OC (а это половина длинной диагонали).OC = AC/2 = CD*cos(α/2)Величина длинной диагонали выражается следующим образом: AC =2a*cos(α/2)

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years