• 1. В тетраэдре DABC, ребро DA=6корень2 см, AB=AC=14 см, угол DAB= углу DAC=45, BC=16 см. Найдите площадь грани BDC.
    2. В параллелепипеде ABCDA1B1C1D1, точка M принадлежит PC, P принадлежит DD1, K принадлежит BC. Постройте сечение параллелепипеда с плоскостью, проходящей через плоскость M1P1K1/

Ответы 1

  • 1)по теореме косинусов BD^2=AD^2+AB^2-2*AD*AB*cos45 BD^2=(6√2)^2+14^2-2*(6√2)*14*(√2/2)=100 BD=10 см треугольники ADB и ADC равные по двум сторонам и углу между ними значит CD=BD=10 см периметр треугольника BDC P=10+10+16=36 см полупериметр р=Р/2=36/2=18 см площадь грани BDC по формуле Герона  S=√(p(p-a)(p-b)(p-c))=√(18(18-10)(18-10)(18-16))=48 см2 ОТВЕТ 48 см2
    • Автор:

      jordisims
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years