• Найти площадь боковой поверхности правильной четырехугольной пирамиды если сторона основания 12 см и боковая грань наклонена к основанию под углом 60

Ответы 1

  • В пирамиде ЕАВСД ЕО - высота, ЕК - апофема.Так как пирамида правильная, то ΔЕАВ - равнобедренный, значит ЕК - его высота и АК=КВ.ΔАВО - равнобедренный, ОК - его высота. Так как АВСД - квадрат, то ОК=АВ/2=12/2=6 см.В тр-ке ЕКО ∠ЕКО=60°. ЕК=ОК/cos60=6/0.5=12 см.Площадь боковой поверхности: S=P·l/2=4АВ·ЕК/2=2·12·12=288 см² - это ответ.
    • Автор:

      dave
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years