• найти длину окружности вписанной в равнобокую трапецию с основаниями 4 см и 16 см

Ответы 2

  • Радиус окружности, вписанной в равнобедренный трапецию, равен половине среднему геометрическому оснований, т.е. r = √(ab)/2, где а и b - основания трапеции.r = √(4•16)/2 = 4 см.Длина окружности l равна 2πrl = 2π•4см = 8π см (или ≈25,14 см).Ответ: l = 8π см.
  • Вариант решения. В четырехугольник можно вписать окружность только тогда, когда суммы его противоположных сторон равны. Трапеция - четырехугольник. Тогда сумма боковых сторон равна 16+4=20 см, а каждая из них равна 10 см. Опустив из тупых углов трапеции высоты, получим прямоугольник и два равных прямоугольных треугольника с гипотенузой 10 и одним из катетов на большем основании, равным (16-4):2=6. Высоты - вторые катеты- можно найти по т. Пифагора, они равны 8 см. Диаметр вписанной в трапецию окружности равен ее высоте. Длина ее =2πr=π•d=8π см
    • Автор:

      cristofer
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years