Предмет:
ГеометрияАвтор:
emmettcareyАвтор:
laineyАвтор:
golden grahamАвтор:
neillesterАвтор:
smoochiemhyzЦентр описанной окружности располагается на пересечении серединных перпендикуляров треугольника. Так как треугольник равнобедренный, то биссектриса и серединный перпендикуляр, проведенные к основанию, совпадают. Следовательно, BO - биссектриса угла ABC.
Тогда: ∠CBO=∠ABC/2=177°/2=88,5°
Треугольник OBC - равнобедренный, так как OB и OC - радиусы окружности и следовательно равны. По свойству равнобедренного треугольника:
∠CBO=∠BCO=88,5°
По теореме о сумме углов треугольника:
180°=∠CBO+∠BCO+∠BOC
180°=88,5°+88,5°+∠BOC
∠BOC=3°
Ответ: 3
Автор:
ajaxtaylorДобавить свой ответ
Предмет:
Английский языкАвтор:
donaldsteeleОтветов:
Смотреть
Предмет:
АлгебраАвтор:
lucianofr20Ответов:
Смотреть
Предмет:
Окружающий мирАвтор:
chester8ub2Ответов:
Смотреть
Предмет:
Другие предметыАвтор:
reubenriggsОтветов:
Смотреть