Очень смешная задачка, меня порадовала.Пусть точка пересечения упомянутых в условии отрезков - это точка M.Предположим, что я построил плоскость ACM.Тогда центр окружности, вписанной в треугольник BCD, лежит в этой плоскости (потому что этот центр лежит на прямой AM), и следовательно, в этой плоскости лежит биссектриса угла BCD. Точно также, в этой плоскости ACM лежит центр окружности, вписанной в треугольник ABD (как "конец" отрезка CM), и, следовательно, в плоскости ACM лежит биссектриса угла DAB.Ну, значит, эти биссектрисы имеют общую точку (конец) на отрезке BD.Что означает, в частности, что AD/AB = CD/CB;AD = AB*CD/CB = 8*7/5 = 11,2Я кучу времени потратил, пытаясь выяснить, не являются ли стороны тетраэдра касательными к одной сфере, но это оказалось ложным следом (и неверно!)