• апофема правильной треугольной пирамиды равна 9/корень из пи. двугранный угол при ребре основания 60 гр. вычисите площадь сферы вписанной в пирамиду.

Ответы 1

  • Апофема правильной треугольной пирамиды равна 9/√π, двугранный угол при ребре основания 60°. Вычислите площадь сферы вписанной в пирамиду.

     

    Вспомним, что правильной называется пирамида, в основании которой лежит правильный треугольник. Поскольку пирамида правильная, в нее можно вписать шар.

    Его центр лежит на высоте пирамиды и совпадает с центром окружности, вписанной в треугольник, боковые стороны которого равны апофеме. ( См. рисунок)

    Так как двугранный угол этой пирамиды равен 60°, то и основание  треугольника MSH равно апофеме пирамиды. Т.е. треугольник этот - равносторонний. Радиус сферы, площадь поверхности которой предстоит найти, равен радиусу вписанной в этот равносторонний треугольник окружности и равен одной трети высоты этого треугольника, которая является и высотой пирамиды. Эту высоту найдем из треугольника SOM. Она равна SM·sin (60°)SO=(9/√π)·(√3):2Радиус вписанной сферы в эту пирамидуr=(3√3):2√πS=4πR²S=4π{(3√3):2√π}²=4π·27:4π=27 см²

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years