• Диагонали плоского четырехугольника ABCD пересекаются в точке O. Из точки O проведены перпендикуляр OM к прямой AB и перпендикуляр OK к плоскости четырехугольника. Докажите, что угол между прямыми MK и AB прямой. Найдите расстояние от точки B до плоскости OKM, если KM равно корень из 3, угол MKB равен 30 градусом.

Ответы 1

  • Это задача на теорему о трех перпендикулярах: если KO⊥ плоскости, прямая лежит в этой плоскости, то основания перпендикуляров к этой прямой, проведенных из точек K и O, совпадают. Поэтому MK⊥AB. Далее, так как BM⊥OM и KM, BM⊥плоскости OMK, поэтому BM даст нам расстояние от B до этой плоскости. BM ищется из прямоугольного треугольника BMK, в котором катет KM по условию равен √3, а угол против BM равен 30°:BM=KM·tg 30°=√3·(√3/3)=1Ответ: 1
    • Автор:

      jellynv7n
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years