• прямые а, б, в, через проходящие точку о, поскость пересекают в точках соответственно А, В, С, не лежа их на одной прямой. Точка М середина отрезка АС В ВС-5 см, угол ОМС прямой. Найдите длину меди BE ОВМ треугольника, если 8 см АС, 4 ОМ-см, в 7 см.

Ответы 1

  • В треугольнике ABC, AC = CB = 8, угол ACB = 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC. 

    Найти угол между MA и плоскостью треугольника ABC

    Точка M находится на равном расстоянии от вершин треугольника ABC, следовательно, наклонные МА, МС и МВ равны, их проекции также равны, а М проецируется в центр В Описанное вокруг Δ АВС окружности. 

    ОА = ОВ = ОС = R

    Углы при А и В равны, как углы при основании равнобедренного треугольника.

    ∠А = ∠В = (180º-120º): 2 = 30º

    по т.синусов

    R = (AC: sin 30º): 2 = (8: 0,5): 2 = 8 см

    Δ МOA - прямоугольный, МО = 12, ОВ = 8, и tg ∠MAO = 12/8 = 1,5

    ∠MAO =  ≈56º20 "

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years