Известно, что отрезок высоты от вершины до ортоцентра (то есть до точки пересечения высот) в два раза больше расстояния от центра описанной окружности до противоположной стороны. В нашем случае, если из центра O описанной окружности опустить перпендикуляр OD на AC, то OD=OB/2=1/2. Далее, ∠C_1HA_1=∠AHC=105° как вертикальные, а поскольку ∠BC_1H=∠BA_1H=90°⇒∠C_1BA_1=360°-90°-90°-105°=75°. Поскольку этот угол является вписанным в описанную вокруг треугольника ABC окружность, а угол AOC - центральным и опирающимся на ту же дугу⇒∠AOC=2·75=150°,а ∠AOD=(1/2)AOC=75°.Наконец, ΔAOD прямоугольный, AO гипотенуза, равная радиусу описанной окружности⇒OD/R=cos 75°⇒R=OD/(cos 45°+30°)=(1/2)/(cos 45°cos 30°- sin 45° sin 30°)=1/((√6-√2)/2)=2(√6+√2)/(6-2)=(√6+√2)/2Факт, приведенный в начале решения, слишком интересен сам по себе, чтобы приводить доказательство здесь. Присылайте запрос, и я, когда будет время, докажу этот факт