Биссектрисы треугольника ABC пересекаются в точке O, причем угол AOB = углу BOC = 110 градусам. а) докажите, что треугольник ABC - равнобедренный, и укажите его основание. б) найдите углы данного треугольника
Пусть угол А=2а, то есть биссектриса делит его на два угла, равным а, аналогично с углом В (2в) и углом С (2с).
Рассматриваем треугольник АВО и треугольник ОВС:
По т. о сумме углов треугольника в треугольнике АВО:
110+а+в=180,
в треугольнике ОВС:
с+в+110=180.
Приравниваем, получаем:
110+а+в=110+с+в
а=с
Значит, 2а=2с, а значит, угол С равен углу А, следовательно треугольник АВС - равнобедренный с основание АС.
Дальше:
угол АОС = 360-110-110= 140.
Треугольник АОС, по т. о сумме углов треугольника:
а+с+140=180, но т.к. а=с:
2а+140=180
2а=40, значит угол А=угол С=40.
Тогда угол В по т. о сумме углов трегольника: 180-40-40=100.
Автор:
prissylsowДобавить свой ответ
Основание остроугольного равнобедренного треугольника равно 24 см, а радиус описанной около него окружности равен 13 см. Найдите боковую сторону треугольника
(2x^3-x^2+3x)/((x+1)(x-2))=-2 Помогите решить.
Предмет:
АлгебраАвтор:
chestergarzaОтветов:
Смотреть
2,6x-0,75=0,9x-35,6 срочно надо!!!
Предмет:
МатематикаАвтор:
kashozkoОтветов:
Смотреть
сочинение на тему самый веселый день в учебном году
Предмет:
Русский языкАвтор:
wifeylsukОтветов:
Смотреть