• Из вершины прямого угла С треугольника АВС проведена высота СР. Радиус окружности вписанной в треугольник ВСР, равен 8, тангенс угла ВАС равен 3/4. Найдите радиус вписанной окружности треугольника АВС

Ответы 1

  • Поскольку тангенс угла ВАС равен 3/4, треугольник АВС - "египетский", то есть подобный треугольнику со сторонами 3,4,5. 

    Высота к гипотенузе СР делит треугольник АВС на два, ему же подобных (из за равенства острых углов), то есть треугольник ВСР тоже "египетский".

    Следовательно, его стороны можно представить, как 3х, 4х, 5х, и радиус вписанной окружности равен

    r = (3х + 4х - 5х)/2 = х;

    То есть x = 8, и стороны ВСР таковы 24, 32, 40.

    На самом деле, ответ уже найден, поскольку соотношение r = (3х + 4х - 5х)/2 = х; связывает коэффициент подобия с радиусом (они просто равны, поскольку  у  "чисто" египетсткого треугольника 3,4,5 r = 1).

    В данном случае ВС = 40, и она соответствует стороне 3, то есть r = 40/3.

    • Автор:

      rhysr6ig
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years