• Бис­сек­три­сы углов A и B па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ют­ся в точке F сто­ро­ны CD. До­ка­жи­те, что F — се­ре­ди­на CD.

Ответы 1

  • Решение задачи:

    Доказательство строим на факте, что биссектриса AF делит угол BAD на два равных угла:

    BAF = FAD

    По правилу накрест лежащих углов при параллельных прямых AB и CD:

    ∠BAF = ∠ DFA.

    Тогда углы FAD и DFA тоже равны, так как BAF = FAD. Значит, треугольник AFD – равнобедренный с основанием AF. Следовательно, AD = DF. По тем же причинам в треугольнике BCF BC = CF. В параллелограмме противоположные стороны равны – значит, BC = AD. Но тогда CF тоже равен AD, а значит, равен также FD. Если CF = FD, то F – середина CD.

    Что и требовалось доказать.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years