• треугольник ABC-равнобедренный с основанием AB биссектрисы углов при основании пересекаются в точке D adb=100 градусов найдите угол C

Ответы 1

  • Ответ:

    20°

    Объяснение:

    Дано (см. рисунок):

    ΔАВС - равнобедренный

    AD - биссектриса угла А

    BD - биссектриса угла В

    ∠ADB = 100°  

    Найти: ∠С

    Решение.

    Так как треугольник ABC равнобедренный, то у него углы при основании равны ∠А=∠В. Биссектриса делит угол пополам, поэтому α=∠А/2 и β=∠В/2. Но ∠А=∠В и поэтому α=β. Значит, треугольник ADB также равнобедренный.

    Найдём углы α и β. Сумма внутренних углов треугольника равна 180°: α + β + 100° = 180°.  В силу этого α = β = (180-100)/2 = 40°.

    Тогда ∠CАВ=∠СВА=2·α=2·40°=80°.  Опять используем свойство:

    Сумма внутренних углов треугольника равна 180°.

    В силу этого ∠CАВ+∠СВА+∠С=180°. Отсюда

    ∠C=180°-(∠CАВ+∠СВА)=180°-(80°+80°)=180°-160°=20°.

    Ответ: 20°

    answer img
    • Автор:

      sarax4lk
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years