• Дан тетраэдр ABCD, у которого все углы при вершине A прямые. O — точка, равноудаленная от всех вершин. Известно, что расстояние между серединами AB и CD равно 17. Найдите AO.

Ответы 2

  • 17*2/√3 конечно же. Модераторы - дайте возможность поправить решение. Ошибся;(
    • Автор:

      lala8xmr
    • 5 лет назад
    • 0
  • любой прямоугольный тетраэдр - у которого все углы при одной вершине прямые, можно достроить до прямоугольного параллелепипеда . точка О - центр описанной сферы возле этого параллелепипеда - равноудалена от всех его вершин. Если размеры параллелепипеда a b c , то радиус описанной окружности R=√(а^2+b^2+с^2)/2. а расстояние между серединами ребер АВ и СD 17=√((a/2)^2+(b/2)^2+(c/2)^2)= Rответ: AO=17
    • Автор:

      dylan17
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years