• Из точки M к окружности проведены 2 касательные к окружности MN и MP. Докажите что MO- биссектриса угла NMP. Докажите что прямая MO перпендикулярна MP и делит NP пополам

Ответы 1

  • Все просто - касательная к окружности - это кратчайшее растаяние между точкой вне окружности и точкой на окружности лежащей на прямой, которая не пересекает эту окружность - то есть не делает сечение.Таким образом, из любой точки вне окружности можно провести два одинаковых отрезка, которые будут касательными. Не больше и не меньше.Треугольник НМП равнобедренный. Отрезки НО и ПО являются радиусами одной окружности и по этому равны.Поскольку треугольники ОНМ и ОПМ подобны и равны, все их соответственные углы равны.Тогда углы НМО=ПМО -> МО биссектриса.Треугольник НМП равнобедренный, а ОМ является его продленной высотой, которая является в таком треугольнике и медианой и биссектрисой. А то, что МО - биссектриса данного угла мы доказали чуть выше. Таким образом НП - основание равнобренного треугольника, которое медиана угла М делит пополам.НО является высотой треугольника ОНМ, так как это кратчайшее растояние от О до НМ - таким образом высота опущеная к данному основанию НМ из точки О - образует прямой угол. Как и в случае с другой прямой.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years