• около равнобедренного треугольника ABC описана окружность с центром М. продолжения отрезка CM пересекает сторону АВ в точке Р а окружность в точке Q. известно что AP:PB=5:4.найдите отношения CP:PQ

Ответы 1

  • AB не может быть основанием треугольника, т.к. тогда AP/PB=1:1. Без ограничения общности можно считать, что AC - основание. Т.к. QC - диаметр, то ∠CAQ=90°. Т.к. M - центр описанной окружности и ABC - равнобедренный, то BM⊥AC. Отсюда BM||AQ, т.е. треугольник APQ подобен BPM, а значит PM/PQ=PB/AP=4/5. Таким образом, PM=4PQ/5, MC=MQ=PM+PQ=(4/5+1)PQ=9PQ/5, CP=MC+PM=9PQ/5+4PQ/5=13PQ/5.Итак, ответ: СP/PQ=13/5.
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years