Треугольники АДС и АВС прямоугольные, так как содержат вписанные углы, опирающиеся на диаметр. Углы Д и В - прямые, АВ = 16+20 = 36 см.Находим катет ВС: ВС = √(39²-36²) = √(39-36)(39+36) = √(3*75) = 15 см.Косинус угла ВАС равен:cosBAC = (36²+39²-15²)/(2*36*39) = 2592/2808 = 12/13.Теперь находим отрезок ЕС по теореме косинусов:ЕС = √(16²+39²-2*16*39*(12/13)) = √(256+1524-1152) = √625 = 25 см.Треугольники АДЕ и ВЕС подобны по двум углам (прямому и вертикальному).Из подобия имеем пропорцию:ДЕ/АЕ = ВЕ/ЕС.Отсюда получаем: ДЕ = (АЕ*ВЕ)/ЕС = (16*20/25) = 64/5 = 12,8 см.