Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны. Значит треугольники ВОС и АОD подобны, так как ВО/OD=CO/OA=1/3, а <BOC=<AOD как вертикальные. Из подобия треугольников следует, что <DAO=<BCO как углы против соответственных сторон подобных треугольников. А эти углы - накрест лежащие при прямых ВС и AD и секущей АС. Значит ВС параллельна АD и четырехугольник АВСD - трапеция. б) Площади подобных треугольников относятся как квадрат коэффициента подобия. Коэффициент подобия равен ВО/ОD=6/18=1/3, значит Saod/Sboc=1/9.