• Построить середину отрезка.
    Решение
    Пусть AB данный отрезок. Построим две окружности с центрами А и B радиуса АB . они пересекаются в точках P и Q. Проведем прямую PQ Точка О пересечения этой прямой с отрезком АВ и есть искомая середина отрезка АВ.
    В самом деле, ТРЕУГОЛЬНИКИ APQ И BPQ РАВНЫ ПО ТРЕМ СТОРОНАМ, ПОЭТОМУ УГОЛ 1 = УГЛУ 2
    объясните пж поч по трем сторонам а то завтра экзамен по геометрии

Ответы 1

  • По 3 сторонам, так как АР=АQ=BP=BQ=R  - радиус окружностей (обе окружности одного и того же  радиуса) .PQ - общая сторона треугольников АPQ и BPQ .Поэтому эти треугольники равны.
    • Автор:

      chris32
    • 5 лет назад
    • 1
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years