• Касательная, проведенная к описанной около треугольника ABC окружности через точку A пересекает прямую BC в точке E. AD - биссектриса треугольника ABC. Докажите, что AE = DE. ( даю 30 баллов)

Ответы 2

  • спасибо
  • Пусть точка С расположена между точками D и Е, то есть С ближняя к точке Е, а В дальняя от точки Е вершины треугольника АВС. Угол АВС - вписанный в окружность, он измеряется половиной дуги АС. Угол ЕАС - угол между хордой и касательной, он тоже измеряется половиной дуги АС. Значит (угол ЕАС) =(угол АВС) . Так, как АD биссектриса угла ВАС, то (угол ВАD)=(угол DАС) . (Угол ЕАD)=(угол ЕАС) +(угол CAD), (угол АDE)=(угол АВD)+(угол BAD) как внешний угол треугольника АВD. Значит (угол ЕАD)=(угол АDЕ) . Отсюда следует, что треугольник ЕАD равнобедренный, и АЕ=ЕD.
    • Автор:

      ann51
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years