• ПОМОГИТЕ, ПОЖАЛУЙСТА, 8 класс геометрия.Пусть I — центр вписанной окружности треугольника ABC, A1 — вторая точка пересечения биссектрисы AI с описанной окружностью треугольника. Известно, что AB=7, CA1=3. Найдите A1I+A1B.

Ответы 1

  • Т.к. ∠BAA₁=∠CAA₁ и являются вписанными, то они опираются на равные хорды, т.е. A₁B=A₁C=3.I - точка пересечения биссектрис треугольника ABC.∠BIA₁=∠A/2+∠B/2 как внешний угол треугольника ABI. ∠IBA₁=∠CBA₁+∠CBI=∠A/2+∠B/2, т.к. ∠CBA₁=∠CAA₁=∠A/2 как вписанные.Значит ∠BIA₁=∠IBA₁, т.е. треугольник BIA₁ - равнобедренный и A₁I=A₁B=A₁С=3. Итак, A₁I+A₁B=6.Значение стороны АВ оказалось не нужным для решения.
    answer img
    • Автор:

      ashley
    • 4 года назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years