• доказать что треугольник равнобедренный если его медианы равны

Ответы 1

  • Пусть АВС - треугольник, АД - медиана, проведенная из вершины А на сторону ВС, СЕ - медиана, проведенная из вершины С на сторону АВ. Медианы АД и СЕ пересекаются в точке М. Точка пересечения медиан делит каждую из медиан на две части в отношении 2:1, считая от вершины. Так как медианы равны, то равны и части медиан АМ=СМ и ЕМ=ДМ. Следовательно треугольники АЕМ и ДМС равны по двум сторонам и углу между ними (угол ЕМД=угол ДМС, как вертикальные углы)Значит стороны, лежащие против равных углов равны, то есть АЕ=ДС. Но АЕ - это половина стороны АВ, ДС - это половина стороны ВС, Значит АВ=ВС, треугольник АВС - равнобедренный.
    • Автор:

      mateo1if8
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years