• В параллелограмме ABCD проведена средняя линия MN (M – середина AB, N – середина CD). Точка P делит отрезок BC в отношении 1:3 (считая от точки B), Q делит отрезок AD в отношении 2:3 (считая от точка А), O – пересечение PQ и MN. Найдите отношение MO к ON.

Ответы 1

  • Возможно, кому-то пригодится решение - привожу своё:Пусть BC=AD=aBC=AD=a, тогда из условия BP=a/4,PC=3a/4,AQ=2a/5,QD=3a/5BP=a/4,PC=3a/4,AQ=2a/5,QD=3a/5. MOMO и ONON найдём как средние линии трапеций ABPQABPQ и QPCDQPCD соответственно.MO=12(a4+2a5)=1213a20ON=12(3a4+3a5)=1227a20MO=12(a4+2a5)=1213a20ON=12(3a4+3a5)=1227a20Отношение выходит 13:2713:27.
    • Автор:

      raquel
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years