• около четырехугольника ABCD МОЖНО описать окружность.Точка p-основание перпендикуляра,опуденного из точки A на прямую BC, Q-из A на DC,R-из D на AB и T-D B.C..ДОКАЖИТЕ ЧТО ТОЧКИ P,Q,R и T лежат на одной окружности

Ответы 1

  •  Достаточно доказать, что RPTQ – равнобокая трапеция. Четырёхугольник ARDQ – вписанный, поэтому  ∠RQD = ∠DAR.  Также, поскольку четырёхугольник ABCD  – вписанный, то  ∠BCD = 180° – ∠DAR.  Cледовательно,  ∠RQD + ∠BCD = 180°,  то есть прямые PT и RQ параллельны.

      Докажем теперь, что в трапеции RPTQ диагонали равны. Четырёхугольник APCQ вписан в окружность с диаметром AC, поэтому PQ = AC·sin∠BCD.  Aналогично,  RT = BD·sin∠ABC.  Но из вписанности четырёхугольника ABCD следует, что    Значит,  PQ = RT,  то есть трапеция – равнобокая.

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years