Дано:окр.с центром О, R=5см, АВ-хорда, АВ=6, М-середина АВНайти: ОМ=?Решение:Так как АВ хорда, то точки А и В лежат на окружности. Проведу ОА и ОВ. Они являются радиусами одной окружности, значит ОА=ОВ=5см. Рассмотрю треугольник АОВ, он равнобедренный (так как АО=ОВ по доказанному) с основанием АВ. Проведу ОМ. Так как М - середина АВ, то ОМ - медиана, значит АМ=МВ=1/2АВ=1/2*6=3 см. А в равнобедренном треугольнике медиана, проведенная к основанию, является высотой. ОМ - высота, угол ОМА - прямой.рассмотрю треугольник ОМА, он прямоугольный (так как угол ОМА - прямой). По теореме Пифагора найду ОМ:ОМ²=ОА²-АМ²= 5²-3²=25-9=16ОМ=4смОтвет: ОМ= 4