• В основании пирамиды лежит прямоугольный треугольник, один из катетов которого 8см, а радиус описанной около него окружности равен 5 см. Основанием высоты этой пирамиды является середина гипотенузы. Высота пирамиды равна 12см. Вычислить боковые ребра пирамиды.

Ответы 1

  • В основании пирамиды лежит прямоугольный треугольник. Центр окружности, описанной около прямоугольного треугольника, лежит на его гипотенузе. Соответственно, AB = 10 см, AO = 5 см. Поскольку высота ON = 12 см, то величина ребер AN и NB равна AN2 = AO2 + ON2 AN2 = 52 + 122 AN = √169 AN = 13 Поскольку нам известна величина AO = OB = 5 см и величина одного из катетов основания (8 см), то высота, опущенная на гипотенузу, будет равна CB2 = CO2 + OB2 64 = CO2 + 25 CO2 = 39 CO = √39 Соответственно, величина ребра CN будет равна CN2 = CO2 + NO2 CN2 = 39 + 144 CN = √183 Ответ: 13, 13 , √183
    • Автор:

      ringo8qfc
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years