• На ребре SC правильной четырёхугольной пирамиды SABCD взята точка М так, что SM:MC=2:1. Найдите отношение площадей сечений пирамиды параллельными плоскостями BMD и a, если a проходит через точку А.

Ответы 2

  • какой здесь рисунок должен быть? Не понятно по данному
  • Плоскость BMD - равнобедренный треугольник, плоскость a даёт в сечении четырёхугольник РКТА, состоящий из двух равнобедренных треугольников РКТ и РТА с общим основанием РТ.Проведём сечение CSA.Оно перпендикулярно заданным плоскостям и пересекает их по высотам треугольников.Из подобия треугольников в полученном сечении имеем: - высота треугольника РКТ равна половине высоты BMD, - основание треугольника РКТ равна половине основания BMD.Получаем: S(РКТ) = (1/4)S(BMD).Высота КЕ треугольника РКТ равна половине высоты МО треугольника BMD, а сумма высот КА треугольников РКТ и BMD в 2 раза больше МО, то есть равна 4 высоты КЕ.Отсюда вывод: высота ЕА равна 3 высоты КЕ и площадь треугольника РТА равна трём площадям РКТ.Подходим к ответу:S(РКТА) = 4S(РКТ) =S(BMD).
    answer img
    • Автор:

      juan
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years