1. ABC1D1 - квадрат S=36, значит АВ=АD1 =6.ABCD - прямоугольник. S=96, значит AD = 16.Искомый угол - угол DAD1 по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". Плоскость ADD1 перпендикулярна прямой АВ, так как <DAB=<BAD1 = 90°.По теореме косинусов в треугольнике ADD1 имеем:Cos(DAD1) = (AD²+AD1²-DD1²)/(2*AD*AD1) илиCos(DAD1) = (256+36-196)/(2*16*6) = 1/2.Ответ: искомый угол равен arccos(1/2) = 60°.2. СН - высота треугольника АВС, проведенная к стороне АВ.Восстановим перпендикуляр НQ из точки Н в плоскости α.Опустим перпендикуляр СР из точки С на прямую НQ.Угол между плоскостью α и плоскостью треугольника АВС - это угол РНС по определению: "Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения". Плоскость СНР перпендикулярна прямой АВ, так как <СНА=<РНА = 90°. Итак, <PHC=45° (дано).Площадь треугольника АВС по Герону равнаSabc= √(p(p-a)(p-b)(p-c)), где р - полупериметр, а=АВ, b=BC и c=AC. Тогда Sabc=√(21*7*8*6) = 84см².Высота СН=2Sabc/AB =2*84/14 =12см.В прямоугольном треугольнике СНР <P=90°, <PHC=45°. Значит катеты НР и СР равны. Тогда по Пифагору: 2*СР²=СН² или СР=√72 = 6√2 см.Ответ: расстояние равно 6√2 см.