• Периметры равнобедренных прямоугольных треугольников относятся
    как 2 : 3, а площадь треугольника с большими сторонами равна 18 см2.
    Вычислите длину биссектрисы другого треугольника, проведенную из
    вершины прямого угла.

Ответы 1

  • 1) Известно, что в подобных треугольниках периметры относятся как коэффициент подобия. Тогда Р₁:Р₂=2:3. 2) Площади подобных треугольников относятся как квадрат коэффициента подобия. Тогда S₁:S₂=4:9. 3) Так как известна площадь большего треугольника S₂=18, то найдем площадь меньшего треугольника  S₁:18=4:9 ⇒S₁=84) Так как по условию эти треугольники равнобедренные, то, обозначив сторону меньшего треугольника за х, составим уравнение для выражения его площади:\frac{x*x}{2}=8 \\ x^{2} =16\\ x=4 5) Зная катеты этого прямоугольного треугольника, найдем по теореме Пифагора его гипотенузу. Она будет равна 4√25) Так как треугольник прямоугольный и равнобедренный, то его биссектриса, проведенная из вершины прямого угла, будет являться медианой и высотой. Поэтому, воспользовавшись формулой для нахождения высоты в прямоугольном треугольнике (h=(ab)/c), найдем искомую величину:(4·4)/(4√2)=4/√2=2√2Ответ: 2√2 
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years