1) Известно, что в подобных треугольниках периметры относятся как коэффициент подобия. Тогда Р₁:Р₂=2:3. 2) Площади подобных треугольников относятся как квадрат коэффициента подобия. Тогда S₁:S₂=4:9. 3) Так как известна площадь большего треугольника S₂=18, то найдем площадь меньшего треугольника S₁:18=4:9 ⇒S₁=84) Так как по условию эти треугольники равнобедренные, то, обозначив сторону меньшего треугольника за х, составим уравнение для выражения его площади:

5) Зная катеты этого прямоугольного треугольника, найдем по теореме Пифагора его гипотенузу. Она будет равна 4√25) Так как треугольник прямоугольный и равнобедренный, то его биссектриса, проведенная из вершины прямого угла, будет являться медианой и высотой. Поэтому, воспользовавшись формулой для нахождения высоты в прямоугольном треугольнике (h=(ab)/c), найдем искомую величину:(4·4)/(4√2)=4/√2=2√2Ответ: 2√2