• площадь кругового сектора радиуса 3 см равна 3п. Длина хорды стягивающей дугу этого сектора равна ___

Ответы 1

  • Площадь кругового сектора =   S=\frac{\pi r^2\alpha }{360^\circ }  .Известен радиус  r=3 cм  и площадь сектора  = S=3\pi   , найдём угол \alpha   . \frac{\pi r^2\cdot  \alpha }{360^\circ }=3\pi \quad \to \quad  \alpha =\frac{3\pi \cdot 360^\circ }{\pi r^2}=\frac{3\cdot 360^\circ }{3^2}=120^\circ Хорда АВ делится перпендикуляром ОН, проведённым из центра окружности пополам. Центральный угол АОВ тоже делится пополам, ∠АОН=120°:2=60°.Можно найти половину хорды. Это будет  АН , АН=1/2*АВ  ⇒  АВ=2*АН.AH=AO\cdot sin60^\circ =3\cdot \frac{\sqrt3}{2}\\\\AB=2\cdot AH=2\cdot 3\cdot \frac{\sqrt3}{2}=3\sqrt3
    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years