Предмет:
ГеометрияАвтор:
zoiehensleyОтвет:
Sabc =768 см².
Объяснение:
Центр О вписанной в равнобедренный треугольник окружности лежит на высоте, проведенной к основанию. Опустим перпендикуляр ОР из точки О к боковой стороне АВ - радиус вписанной окружности.
Высота треугольника равна ВН = ВО+ОН = 20+12 =32 см.
ВР = √(ОВ²-ОР²) =√(20²-12²) = √544 = 4√34 = 16 см. (по Пифагору).
∆ВОР ~ ∆АВН по острому углу (признак подобия прямоугольных треугольников). Из подобия:
АН/ОР = ВН/ВР => АН = ОР*ВН/ВР = 12*32/16 = 24 см.
АС = 2*АН = 48 см.
Sabc = (1/2)*AC*BH = (1/2)*48*32 = 768 см².
Автор:
deangelo23Добавить свой ответ
Предмет:
МатематикаАвтор:
cashkxg4Ответов:
Смотреть
Предмет:
Русский языкАвтор:
jaylynnОтветов:
Смотреть