Предмет:
ГеометрияАвтор:
miqueasjenningsАвтор:
houdini23Автор:
finn46Пусть дан четырёхугольник АВСD. Точка К - середина АВ, т.М - середина ВС, N и Т - середины СD и DA соответсвенно. По условию КN=ТМ. Проведем диагонали АС и ВD. Соединим середины сторон треугольников АВС, ВСD, CDA и DAB. В треугольниках АВС и АDC средние линии параллельны и равны половине диагонали АС исходного четырехугольника.⇒ КМ параллельна и равна ТN. Аналогично доказывается КТ=МN. Противоположные стороны КМNТ параллельны и равны. КМNТ - параллелограмм с равными диагоналями ( КN=МТ по условию), т.е. КМNТ - прямоугольник. А раз стороны КМNТ пересекаются под прямым углом, то и диагонали четырехугольника АВСD, которым они параллельны, также пересекаются под прямым углом, ч.т.д.
Автор:
judithcn2pДобавить свой ответ
Предмет:
БиологияАвтор:
colonel5jvrОтветов:
Смотреть
Предмет:
ЛитератураАвтор:
johnny7odgОтветов:
Смотреть
Предмет:
МатематикаАвтор:
tomasoxs7Ответов:
Смотреть