• Найдите точку пересечения прямых, заданными уравнениями 3x-y-5=0 и 3x+4y+7=0

Ответы 1

  • 3x - y - 5 = 0 \\ 3x + 4y + 7 = 0 \\ • Чтобы найти координату точки пересечения данных функций, необходимо их просто приравнять.3x - y - 5 = 3x + 4y + 7 \\  - 5y = 12 \\  y \: =  -  \frac{12}{5}  =  • Теперь подставляем найденный у = - 2,4 в любое из начальных уравнений.3x - y - 5 = 0 \\ 3x - ( - \frac{12}{5} ) - 5 = 0 \\ 3x +  \frac{12}{5}  - 5 = 0 \\ 3x =  \frac{13}{5}  \\ x =  \frac{13}{3 \times 5}   =  \frac{13}{15} \\ ОТВЕТ: ( 13/15 ; - 12/5 )
    • Автор:

      mackboyer
    • 6 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years