• Треугольник со сторонами 3 см, 4 см и 5 см согнули по его средним линиям и получили модель тетраэдра. Тогда площадь каждой грани тетраэдра равна…

Ответы 1

  •  Средняя линия треугольника  соединяет середины двух сторон треугольника, параллельна и равна половине  третьей стороны. Средние линии делят исходный треугольника на 4 равных ( см. рисунок). Треугольник, образованный средними линиями треугольника, подобен исходному ( по равенству соответственных углов, образованных при пересечении параллельных средней линии и стороны треугольника секущей – стороной исходного треугольника). Коэффициент подобия k=1/2.  Треугольник со сторонами 3,4, 5 - египетский, т.е. прямоугольный. Его площадь - половина произведения катетов. S=3•4:2=6 см²

         Отношение площадей подобных треугольников равно квадрату коэффициента подобия. Если исходный треугольник АВС, а середины его сторон К, М, Н, то Ѕ(КМН)=1/4•Ѕ(АВС)=1,5 см²

     Каждый такой треугольник - грань развёртки тетраэдра. Площадь грани - 1,5 см²

    answer img
    • Автор:

      hatfield
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years