• В трапеции ABCD боковая сторона AB равна диагоналиBD.Точка M середина диагонали AC. Прямая BM пересекает отрезок CDв точке E . Докажите, что BE=CE.

Ответы 1

  • CF||AB, ABCF - параллелограмм.

    AC, BF - диагонали ABCF. Диагонали параллелограмма точкой пересечения делятся пополам. M - середина AC => M∈BF, E∈BF.

    CF=AB (противоположные стороны параллелограмма) => CF=BD, BDFC - равнобедренная трапеция.

    BF, CD - диагонали BDFC. Диагонали равнобедренной трапеции образуют на основаниях равнобедренные треугольники (∠BCF=∠CBD, CF=BD, BC- общая => △BCF=△CBD, ∠CBF=∠BCD). BE=CE.

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years