• СРОЧНО 70 баллов Геометрия 11 класс
    Помогите решить 3 задачи

    1) Основа четырехугольной пирамиды - прямоугольник со сторонами 12 см и 30 см. Основа высоты пирамиды - точка пересечения диагоналей прямоугольника. Найдите площадь боковой поверхности пирамиды, если её высота равна 8 см.

    2) Стороны основ треугольной пирамиды равны 6 см, 10 см и 14 см. Боковые грани наклонены к плоскости основы под углом 60 градусов. Найти площадь полной поверхности пирамиды.

    3) Основа пирамиды SABC- равнобедренный треугольник ABC. АB=BС=12 см. Боковая грань SAC, которая имеет основу треугольника, перпендикулярна к плоскости ABC, а две другие боковые грани наклонены к плоскости под углом 60 градусов, SO=4√3 см. Найти площадь основы пирамиды.

Ответы 3

  • https://znanija.com/task/9534886
  • Спасибо, а можете объяснить, проекции высот боковых граней на основание - это как?И что такое SO в третьей задаче, это высота пирамиды?
  • 1) Находим проекции высот боковых граней на основание.

    h1 = √((30/2)² + 8²) = √(225 + 64) = √289 = 17 см.

    h2 = √((12/2)² + 8²) = √(36 + 64) = √100 = 10 см.

    Получаем: Sбок = (1/2)*(2*12*17 + 2*30*10) = 204 + 300 = 504 см².

    2) Если боковые грани наклонены к плоскости основы под одинаковым углом, то вершина пирамиды проецируется в центр вписанной окружности, а проекции высот боковых граней равны между собой и равны радиусу вписанной окружности.

    Находим полупериметр основания р = (6 + 10 + 14 = )/2 = 30/2 = 15 см.

    Площадь основания находим по формуле Герона:

    So = √(15*9*5*1) = 15√3 см².

    Радиус вписанной окружности r = S/p = 15√3/15 = √3 см.

    Высоты наклонных граней равны h = r/cos 60° = √3/(1/2) = 2√3 см.

    Sбок = (1/2)Ph = (1/2)*30*2√3 = 30√3 см².

    Площадь полной поверхности пирамиды равна:

    S = So + Sбок = 15√3 + 30√3 = 45√3 см².

    3) Проведём перпендикуляр ОК  к боковой стороне основания.

    Обозначим ОС = х, КС = у, ОК = h, BO = √(12² - x²) = √(144 - x²).

    Из прямоугольного треугольника ВОС имеем:

    h² = y(12 - y),

    12y - y² = 16.

    Получаем квадратное уравнение  y² - 12y + 16 = 0.

    Квадратное уравнение, решаем относительно y:  

    Ищем дискриминант:

    D=(-12)^2-4*1*16=144-4*16=144-64=80;

    Дискриминант больше 0, уравнение имеет 2 корня:

    y_1=(√80-(-12))/(2*1)=(2√80+12)/2=√80/2+12/2=√80/2+6 ≈ 10.472136;

    это ВК.

    y_2=(-√80-(-12))/(2*1)=(-√80+12)/2=-√80/2+12/2=-√80/2+6 = 6 - 2√5 ≈ 1.527864, это у.

    Отсюда находим искомое значение стороны АС:

    АС = 2√(h² + y²) = 2√(16 + (6 - 2√5)²) = 4√(18 - 6√5) см.

    • Автор:

      caracasey
    • 5 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years