• Докажите теорему Пифагора тремя различными способами! Внимание! Теорема должна быть доказана по курсу 8 класса

Ответы 1

  • 1.Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

    Доказательство.

    Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с .Докажем, что с²=а²+в².

    Доказательство.

    Достроим треугольник до квадрата со стороной а + в . Площадь S этого квадрата равна (а + в)² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ав  , и квадрата со стороной с, поэтому S= 4 * ½ав + с² =2ав + с².

    доказательство  закончено.

    2.

    После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

    Рассмотрим прямоугольный треугольник с прямым углом С, СD– высота . Докажем, что АС² +СВ² = АВ².

    Доказательство.

    На основании утверждения о катете прямоугольного треугольника:

    АС = , СВ = .

    Возведем в квадрат и сложим полученные равенства:

    АС² = АВ * АD, СВ² = АВ * DВ;

    АС² + СВ² = АВ * ( АD + DВ), где АD+DB=AB, тогда

    АС² + СВ² = АВ * АВ,

    АС² + СВ² = АВ².

    Доказательство закончено.

    3.

    Данное доказательство основано на разрезании квадратов, построенных на катетах , и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years