• Через вершину М равностороннего треугольника МРК проведен к его плоскости перпендикуляр МС. Угол между прямой СК и плоскостью треугольника равен 60*(градусам) РК=24см. Вычислите длины перпендикуляра МС и наклонной СР.

Ответы 1

  • Т.к. CM ⊥ MPK, то проекцией прямой CK на плоскость MPK будет MK.

    Т.е. ∠CKM = 60°, т.к. он и будет углом между прямой и плоскостью.

    Тогда из прямоугольного ΔCMK найдем:

    MC=MK*tgCKM=PK*tgCKM=24*tg60=24\sqrt{3}

    ΔCPM = ΔCKM, т.к. они оба прямоугольные, у них общая сторона MC и MP = MK как стороны равностороннего треугольника.

    Из равенства этих треугольников следует, что CP = CK

    CK также найдем из прямоугольного ΔCMK

    CK=\frac{MK}{cosCKM}=\frac{24}{cos60}=48

    answer img
    • Автор:

      erin79
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years