Автор:
butterbunsТ.к. OK ║ AD, а AD ║ BC ⇒ OK ║ BC
Точка O - центр пересечения диагоналей параллелограмма делит их пополам ⇒ OK средняя линия ΔBCD.
BC = 2 * OK = 2 * 6 = 12 см
В прямоугольном ΔBCD ∠CBD = 90° - ∠BCD = 90° - 60° = 30°.
Против угла в 30° лежит половина гипотенузы ⇒ CD = BC / 2 = 12 / 2 = 6.
В прямоугольном ΔBCD по теореме Пифагора найдем:
Площадь прямоугольного ΔBCD найдем как полупроизведение катетов:
Т.к. диагональ BD делит параллелограмм на два равных треугольника, то:
Ответ: площадь параллелограмма равна 36√3 см2
Автор:
luca326Добавить свой ответ
Предмет:
МатематикаАвтор:
floresq5syОтветов:
Смотреть
Предмет:
Окружающий мирАвтор:
beltrán93Ответов:
Смотреть
Предмет:
МатематикаАвтор:
adolfoagk0Ответов:
Смотреть
Предмет:
ХимияАвтор:
barclaymorganОтветов:
Смотреть