Предмет:
ГеометрияАвтор:
vicenteboyerАвтор:
mccarthyАвтор:
félix33Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
Что и требовалось доказать.
Автор:
dereonrichmondДобавить свой ответ
Предмет:
Русский языкАвтор:
mateo1if8Ответов:
Смотреть
Предмет:
Русский языкАвтор:
leo7x9nОтветов:
Смотреть
Предмет:
Українська моваАвтор:
julia46Ответов:
Смотреть
Предмет:
МатематикаАвтор:
janiyahОтветов:
Смотреть