• Сторона основания правильной четырехугольной пирамиды
    равна 6, а длина бокового ребра равна 9. Найти объем
    пирамиды.

Ответы 1

  • V=1/3*S(основания)*H(пирамиды)

    S=6*6=36-площадь квадрата

    Проведем высоту на пересечение диагоналей квадрата. В квадрате ABCD  За теоремой Пифагора найдем диагональ AC. AC^2=36+36;AC=6√2;половина этой диагонали будет равна 3√2.

    HO-высота пирамиды. Из треугольник HOC(угол О=90 градусов) найдем высоту.

    HO^2=81-18

    HO^2=63

    HO=3√7

    V=1/3*3√7*36=36√7

  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years