• В треугольнике CDE угол C равен 54 градуса, угол E равен 33 градуса,DK-биссектриса угла CDE, через вершину D проведена прямая AB параллельная CE. Найдите угол ADK.
    P.S. рисунок уже есть.

Ответы 1

  • Найдем  ∠СДЕ=180-33-54=93°

    Т.к. ДК-биссектриса ∠СДЕ, то ∠СДК=∠ЕДК=93/2=46,5°

    (Далее решение задачи можно разделить на 2 случая)

    1) Случай когда направление вектора АВ совпадает с вектором СЕ.

    Из того, что АВ║СЕ и ЕД -секущая для них, то ∠СЕД и ∠ЕДА  - внутренние односторонние углы и ∠СЕД +∠ЕДА=180°.

    Значит ∠ЕДА=180-33=147°

    Из рисунка очевидно, что ∠АДК=∠ЕДА-∠ЕДК=147-46,5=100,5°

    2) Случай когда направление вектора АВ не совпадает с вектором СЕ.

    Из того, что АВ║СЕ и СД -секущая для них, то ∠ЕСД и ∠АДС  - внутренние односторонние углы и ∠ЕСД + ∠АДС=180°.

    Значит  ∠АДС=180-54=126°

    Из рисунка очевидно, что ∠АДК= ∠АДС-∠СДК=126-46,5=79,5°

    Ответ: в зависимости от направлениия вектора АВ, ∠АДК=100,5° или 79,5°

    • Автор:

      lilly26
    • 6 лет назад
    • 0
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years