• На боковых сторонах МК и МР равнобедренного треугольника отложены равные отрезки МА и МВ. Точка А и В соединены с серединой О основание треугольника. Докажите, что ОА=ОВ

Ответы 1

  • Решение:

    т.к. MA=MB, а MK=MP(как боковые), AK=BP

    Т.к. точки A и B соединены с серединной точкой O, KO=OP

    угол MKP=MPK(углы при основании равны)

    Отсюда следует, что треуголники KAO и PBO равны по 1 признаку равенства треуголников (по двум сторонам и углу между ними), значит OA=OB

    что и требовалось доказать.

    answer img
  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years