• В правильной треугольной пирамиде высота равняется √13си а радиус круга вписоного в основу √3см. Вычислить боковую поверхность пирамиды

Ответы 1

  • Ответ:

    36см²

    Объяснение:

    Правильная треугольная пирамида - это пирамида, основанием которой является правильный треугольник, а вершина проецируется в центр основания. Значит треугольники которые образуют боковую поверхность являются равнобедренными.

    Sбок.пов.=3*Sтреуг.=3*1/2*H*a

    где H - это высота треугольника боковой поверхности.

    а - длина основания треугольника боковой поверхности...

    т.к. у нас имеется  радиус r круга вписанного в основание, найдем величину а,   r=\frac{\sqrt{3} }{6} a,, значит a=\frac{6r}{\sqrt{3} }=\frac{6*\sqrt{3} }{\sqrt{3} }  =6см

    Зная высоты пирамиды h из прямоугольного треугольника со сторонами r, h и H, найдем H=\sqrt{r^{2}+h^{2}  } =\sqrt{\sqrt{3} ^{2}+\sqrt{13} ^{2}  }=\sqrt{16} =4см

    отсюда Sбок.пов.=3*Sтреуг.=3*1/2*H*a=3*1/2*4*6=36см²

  • Добавить свой ответ

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years