• Дан прямой круговой цилиндр высотой 3 и радиусом 8. В одном из основании проведена хорда AB равная радиусу основания, а в другом основании проведен диаметр CD перпендикулярный прямой AB.
    Построено сечение цилиндра плоскостью ABNM, перпендикулярной прямой CD, причём Точка C и центр основания цилиндра, содержащего отрезок CD, лежат по одну сторону от плоскости сечения
    А) докажите, что диагонали четырехугольника ABNM равны
    Б) Найдите объем пирамиды CABNM.
    Очень срочно, помогите пожалуйста! 11 класс.. ​

Ответы 6

  • ничего больше не нужно, спасибо.
  • отпишитесь, понравился ли рисунок учителю? интересно
    • Автор:

      shelly
    • 5 лет назад
    • 0
  • здравствуйте. Нет, не понравился. Сказала, что мне нужно стандартный рисунок, а не 3Д...
  • Честное слово, если бы я понимал, какой рисунок устроит, я бы нарисовал.
    • Автор:

      jennifer
    • 5 лет назад
    • 0
  • Да ничего страшного :) Спасибо что решили задачу)
  • Ответ:

    Объяснение:

    А) докажем что АВNM - прямоугольник.

    Имеем 2 параллельные плоскости - основания цилиндра. Плоскость, проходящая через хорду АВ перпендикулярна прямой CD, лежащей в плоскости основания. Значит плоскость сечения перпендикулярна плоскостям основаниий цилиндра, а т.к. цилиндр прямой, то и высоты цилиндра AM и BN, образованные сечением ABNM перепендикулярны плоскостям оснований. В результате получаем четырёхугольное сечение, все внутренние углы которого прямые. Это - прямоугольник.

    Диагонали прямоугольника равны!

    Б) Найдём объём пирамиды CABNM.

    Формула вычисления объёма пирамиды

    V=1/3·S·h, где S-площадь основания, h-высота пирамиды.

    Очевидно, что S=8*3=24.

    Найдём h=CD₁.

    Используем свойство хорд: если 2 хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

    В нашем случае хордами выступают MN=AB=R и CD=2R.

    Хорда MN делится на MD₁=ND₁, т.к. хорда CD является диаметром и пересекает хорду MN под прямым углом, разделяя её пополам.

    Составим уравнение, обозначив за х D₁D - меньшую часть хорды CD отсеченную плоскостью ABNM:

    x·(2R-x) =0.25R²

    Для удобства дальнейших расчетов подствим вместо R числовое значение:

    х·(16-х)=16

    х²-16х+16=0

    D=16²-4*16=192

    x₁=(16+√192)/2=8+4√3

    x₂=(16-√192)/2=8-4√3

    Здесь решение x₁ - это случай, когда точка D и центр основания лежат по одну сторону от плоскости сечения (т.к. в нашем случае там находится точка С, то это и есть высота пирамиды,

    а х₂ - это отрезок DD₁ изначально принятый за х.

    Значит DD₁=8-4√3 и проверим высоту пирамиды

    h=CD₁=(2R-x)=16-8+4√3=8+4√3 (совпало с х₁) - это можно выпустить. Простая проверка.

    V=1/3·S·h=1/3·24·(8+4√3)=64+32√3 кубических единиц.

    answer img
    • Автор:

      mendoza
    • 5 лет назад
    • 0
  • Добавить свой ответ

Еще вопросы

Войти через Google

или

Забыли пароль?

У меня нет аккаунта, я хочу Зарегистрироваться

How much to ban the user?
1 hour 1 day 100 years