Предмет:
ГеометрияАвтор:
ferrisrobbinsОтвет:
8
Объяснение:
Условие:
В трапеции АВСD (АВ||СD) AD=6. Окружность с центром в точке В и радиусом, равным 5, проходит через точки А, D и С. Найдите диагональ АС.
Решение:
Обозначим угол ABD через β, а угол DBC через γ. Так как АВ||СD, то угол ABD равен углу BDC,
Треугольники ABD и BDC равнобедренные, так как их боковые стороны AB, BD и BC - радиусы окружности и равны 5. Диагональ АС может быть найдена из треугольник ABC (он тоже равнобедренный, АС - его основание), Надем АС из свойства синуса угла В при вершине данного треугольника.
Угол B=β+γ, из тругольника BDC γ=180−2β. Тогда угол B=β+180−2β=180−β.
Из равнобедренного треугольника ABC имеем AC=2∗AB∗sin(180−β2)=10∗sin(90−β/2)=10∗cos(β/2).
cos(β/2) найдем из равнобедренного треугольника ABD: cos(β/2)=h/AB, где h - высота данного треугольника (обозначена синей линией на рисунке). h=52−32−−−−−−√=4, тогда cos(β/2)=4.5, следовательно, AC=10∗45=8.
8
Автор:
willyДобавить свой ответ
Предмет:
МатематикаАвтор:
peanut33Ответов:
Смотреть
Предмет:
Русский языкАвтор:
josiehooverОтветов:
Смотреть
Предмет:
ЛитератураАвтор:
cutietic3Ответов:
Смотреть